

Documentation for Image Wrench (imgwrench)

Contents:

	Image Wrench
	Features

	Installation

	Usage

	Pipelines

	Developer Notes

	Credits

	Installation
	Stable release

	From sources

	Usage
	blackwhite

	collage

	colorfix

	crop

	dither

	filmstrip

	flip

	frame

	framecrop

	quad

	resize

	stack

	imgwrench
	imgwrench package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.17.0 (2022-11-12)

	0.16.1 (2021-06-19)

	0.16.0 (2021-01-23)

	0.15.0 (2021-01-22)

	0.14.0 (2021-01-21)

	0.13.0 (2020-10-26)

	0.12.0 (2020-07-24)

	0.11.1 (2020-04-05)

	0.11.0 (2020-03-21)

	0.10.0 (2020-03-04)

	0.9.0 (2020-02-19)

	0.8.1 (2020-01-12)

	0.8.0 (2019-07-10)

	0.7.1 (2019-05-16)

	0.7.0 (2019-05-16)

	0.6.0 (2019-03-14)

	0.5.2 (2019-03-10)

	0.5.1 (2019-03-09)

	0.5.0 (2019-03-07)

	0.4.0 (2019-02-26)

	0.3.0 (2019-02-17)

	0.2.0 (2019-01-30)

	0.1.1 (2019-01-29)

	0.1.0 (2019-01-29)

Indices and tables

	Index

	Module Index

	Search Page

Image Wrench

[image: _images/imgwrench.svg]
 [https://pypi.python.org/pypi/imgwrench][image: _images/badge.svg]
 [https://github.com/luphord/imgwrench/actions][image: Documentation Status]
 [https://imgwrench.readthedocs.io/en/latest/?badge=latest]A highly opinionated image processor for the commandline. Multiple subcommands can
be executed sequentially to form a processing pipeline.

imgwrench is free software available under the MIT license.
Detailed documentation can be found at https://imgwrench.readthedocs.io.

Features

	Subcommands can be executed sequentially to form a pipeline

	Command blackwhite for converting images to black and white

	Command collage creates a collage from multiple images

	Command colorfix for fixing the colors of aged photographs

	Command crop for cropping images to give aspect ratio

	Command dither for converting images to black and white and dithering

	Command filmstrip to stack images horizontally forming a filmstrip

	Command flip to flip/mirror images left-right

	Command frame to put a monocolor frame around images

	Command framecrop top frame and crop an image to a target aspect ratio

	Command quad collects four images to a quad

	Command resize for resizing images

	Command save for no processing, but saving images with the given parameters

	Command stack for vertically stacking images

Installation

Make sure you have Python and pip installed and available in your $PATH.
Then imgwrench can be installed with

pip install imgwrench

In order to install for the current user only, you may want to execute

pip install --user imgwrench

instead. In this case you will have to ensure that the local bin directory
(typically ~/.local/bin on Linux systems) is contained in your $PATH.

Note that legacy Python2 is not supported. If your system still ships Python2
as the default Python interpreter, you may have to execute

pip3 install imgwrench

or

python3 -m pip install imgwrench

Usage

imgwrench is used on the command line by piping file paths into it, e.g.

ls /path/to/my/images/*.jpg | imgwrench blackwhite

Full command line help is

Usage: imgwrench [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...]...

A highly opinionated image processor for the commandline. Multiple
subcommands can be executed sequentially to form a processing pipeline.

Options:
-i, --image-list FILENAME File containing paths to images for processing,
 defaults to stdin

-r, --repeat INTEGER repeat every image in input sequence [default:
 1]

-p, --prefix TEXT prefix for all output filenames before numbering
 [default: img_]

-d, --digits INTEGER number of digits for file numbering [default: 4]
-c, --increment INTEGER increment for file numbering [default: 1]
-k, --keep-names keep original file names instead of numbering
 [default: False]

-f, --force-overwrite force overwriting output image file if it exists
 [default: False]

-o, --outdir DIRECTORY output directory [default: .]
-q, --quality INTEGER quality of the output images, integer 0 - 100
 [default: 88]

-e, --preserve-exif preserve image exif and xmp metadata if available
 [default: False]

-j, --jpg / --png save output images in JPEG format (otherwise PNG)
 [default: True]

--help Show this message and exit.

Commands:
blackwhite Convert color images to black and white.
collage Create a collage from multiple images.
colorfix Fix colors by stretching channel histograms to full range.
crop Crop images to the given aspect ratio.
dither Apply black-white dithering to images.
filmstrip Stack all images horizontally, creating a filmstrip.
flip Flip/mirror images left-right.
frame Put a monocolor frame around images.
framecrop Crop and frame an image to a target aspect ratio.
quad Collects four images to a quad.
resize Resize images to a maximum side length preserving aspect...
save No-op to enable saving of images without any processing.
stack Stacks pairs of images vertically, empty space in the middle.

Pipelines

imgwrench subcommands can be combined into pipelines. This saves you from generating intermediate
files cluttering your filesystem or reducing the quality of the final results. For example, if you
want to convert all images in the current directory to black and white, put a white frame
around them and have them cut to an aspect ratio of 3:2 (for standard format printing), you would
execute the following command:

ls *.JPG | \
imgwrench -o out -q 95 -p oldschool_img_ \
 blackwhite \
 framecrop -a 3:2 -w 0.03 -c white

Please refer to the detailed subcommand documentation [https://imgwrench.readthedocs.io/en/latest/usage.html] for the individual parameters.

Developer Notes

Should you run into the following exception while running imgwrench from an editable install

importlib_metadata.PackageNotFoundError: No package metadata was found for imgwrench

try executing make dist to regenerate the egg files required bei importlib
which have likely been removed by a call to make clean.

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install Image Wrench, run this command in your terminal:

$ pip install imgwrench

This is the preferred method to install Image Wrench, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Image Wrench can be downloaded from the Github repo [https://github.com/luphord/imgwrench].

You can either clone the public repository:

$ git clone git://github.com/luphord/imgwrench

Or download the tarball [https://github.com/luphord/imgwrench/tarball/master]:

$ curl -OL https://github.com/luphord/imgwrench/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

blackwhite

The blackwhite subcommand converts color images to black and white.

Assuming image rainbow.jpg in the current directory, blackwhite can
be applied to output to img_0000.jpg as follows:

ls rainbow.jpg | imgwrench blackwhite

[image: _images/blackwhite.jpg]
At the moment, blackwhite supports no further parameters. Conversion
is delegated to the PIL convert(‘L’) method call.

collage

The collage subcommand creates a collage of all input images. The method
for image composition is based on the Blocked Recursive Image Composition (BRIC)
algorithm by C. Brian Atkins..

Assuming a couple of images in the current directory, collage generates a collage
in img_0000.jpg as follows:

ls *.jpg | imgwrench collage -c lightgrey

[image: _images/collage.jpg]
-w/--width and -s/--height can be used to specify the dimensions
of the output image. The parameter -f/--frame-width specifies the frame width
as fraction of the longer image side, e.g. 0.1 for a frame width that is equal
to 10% of the longer image side. Also -c/--color is supported which accepts
the frame color as either a name (e.g. white, green), a hex value (e.g.
#ab1fde) or an rgb function value (e.g. rgb(120,23,217)).

Usage: imgwrench collage [OPTIONS]

Create a collage from multiple images.

Options:
-w, --width INTEGER width of the collage [default: 3072]
-s, --height INTEGER height of the collage [default: 2048]
-f, --frame-width FLOAT width of the frame as a fraction of the longer
 image side [default: 0.01]

-c, --color COLOR color of the frame as a color name, hex value or
 in rgb(...) function form [default: white]

-x, --seed INTEGER seed for random number generator [default: 123]
-n, --number-tries INTEGER number of tries for layout generation [default:
 100]

--help Show this message and exit.

colorfix

The colorfix subcommand repairs aged images with a color shift (usually towards
red) by shifting the channel histograms back to the full range.

Assuming image old.jpg in the current directory, colorfix can be applied to
repair its colors and output as img_0000.jpg as follows:

ls old.jpg | imgwrench colorfix

[image: _images/colorfix.jpg]
The colorfix algorithm stretches the channel histogram to specified clipping
values (cutoffs). The precise specification depends on the -m/--method option.

--method=quantiles supports the float parameter -a/--alpha
representing the quantile
within each color channel that is clipped to the minimum and maximum value.
It defaults to 0.01. Increasing alpha will stretch the histogram further
and will intensify the contrast of the resulting image.

--method=fixed-cutoff lets you specify the cutoff colors directly as named color,
hex value or in rgb(…) function form. Use -l/--lower-cutoff and
-u/--upper-cutoff to specify.

--method=quantiles-fixed-cutoff combines the other two methods and applies the
“stronger” cutoff (i.e. the higher value of lower cutoffs and lower value of
upper cutoffs).

Usage: imgwrench colorfix [OPTIONS]

 Fix colors by stretching channel histograms to full range.

Options:
 -m, --method [quantiles|fixed-cutoff|quantiles-fixed-cutoff]
 algorithm method to use; quantiles stretches
 all channel histograms between the quantiles
 specified by --alpha; fixed-cutoff stretches
 channels between the cutoffs specified by
 --lower-cutoff and --upper-cutoff;
 quantiles-fixed-cutoff combines the two
 methods and applies the "stronger" of both
 cutoffs (i.e. the higher value of lower
 cutoffs and lower value of upper cutoffs)
 [default: (dynamic)]
 -a, --alpha FLOAT quantile (low and high) to be clipped to
 minimum and maximum color; relevant for
 --method=quantiles and --method=quantiles-
 fixed-cutoff [default: 0.01]
 -l, --lower-cutoff COLOR lower cutoff as a color name, hex value or
 in rgb(...) function form; relevant for
 --method=fixed-cutoff and
 --method=quantiles-fixed-cutoff [default:
 rgb(127,0,0)]
 -u, --upper-cutoff COLOR lower cutoff as a color name, hex value or
 in rgb(...) function form; relevant for
 --method=fixed-cutoff and
 --method=quantiles-fixed-cutoff [default:
 white]
 --help Show this message and exit.

crop

The crop subcommand crops images to a specified aspect ratio.

Assuming image rainbow.jpg in the current directory, crop can be applied
with aspect ratio 2:1 and output to img_0000.jpg as follows:

ls rainbow.jpg | imgwrench crop -a 2:1

[image: _images/crop.jpg]
crop supports the parameter -a/--aspect-ratio which has to be an aspect ratio
specified as two numbers separated by a colon, e.g. 2:1, 3:4, 117:123.

Usage: imgwrench crop [OPTIONS]

Crop images to the given aspect ratio.

Options:
-a, --aspect-ratio RATIO aspect ratio to crop to [default: 3:2]
--help Show this message and exit.

dither

The dither command converts the image to true black and white (not greyscale)
and applies dithering.

Assuming image lensflare.jpg in the current directory, dither can be applied
to output img_0000.jpg as follows:

ls lensflare.jpg | imgwrench dither

[image: _images/dither.jpg]
The parameter -b/--brightness-factor adjusts the brightness of the image before dithering.
It is usually recommended to make images brighter before dithering. A value of 1.0 is
neutral (i.e. has no effect), larger values will make the image brighter, smaller values
will make it darker. It defaults to 1.5.

Usage: imgwrench dither [OPTIONS]

Apply black-white dithering to images.

Options:
-b, --brightness-factor FLOAT adjust brightness before dithering (1.0 is
 neutral, larger is brighter, smaller is
 darker) [default: 1.5]
--help Show this message and exit.

filmstrip

The filmstrip command stacks all images in the pipeline horizontally to create
a filmstrip within a single row. Assuming a couple of images in the current directory,
filmstrip will create a single output image img_0000.jpg width height 800 pixels
as follows:

ls *.JPG | imgwrench filmstrip -s 800

[image: _images/filmstrip.jpg]
The parameter -s/--height specifies the total height of the resulting collage,
its width will be inferred. -w/--frame-width determines the frame width relative
to the specified height and -c/--color sets the frame color.

Usage: imgwrench filmstrip [OPTIONS]

Stack all images horizontally, creating a filmstrip.

Options:
-s, --height INTEGER height of the filmstrip [default: 2048]
-w, --frame-width FLOAT width of the frame as a fraction of the height of
 the filmstrip [default: 0.025]
-c, --color COLOR color of the frame as a color name, hex value or in
 rgb(...) function form [default: white]
--help Show this message and exit.

flip

The flip command flips (a.k.a. mirrors) all images in the pipeline horizontally,
i.e. what was left is now right and vice versa.

Assuming image town.jpg in the current directory, flip will output
the mirrored image to img_0000.jpg as follows:

ls town.jpg | imgwrench flip

[image: _images/flip.jpg]
flip takes no parameters.

frame

The frame subcommand puts a monocolor frame around the image. The frame is
added to the image size.

Assuming image saarschleife.jpg in the current directory, frame can
be applied with a frame width equal to 3% of the original image width (which
is in landscape format, i.e. width > height) and a light grey color
to output to img_0000.jpg as follows:

ls saarschleife.jpg | imgwrench frame -w 0.03 -c '#ddd'

[image: _images/frame.jpg]
frame supports the parameter -w/--frame-width which specifies the frame width
as fraction of the longer image side, e.g. 0.1 for a frame width that is equal
to 10% of the longer image side. Also -c/--color is supported which accepts
the frame color as either a name (e.g. white, green), a hex value (e.g.
#ab1fde) or an rgb function value (e.g. rgb(120,23,217)).

Usage: imgwrench frame [OPTIONS]

Put a monocolor frame around images.

Options:
-w, --frame-width FLOAT width of the frame as a fraction of the longer
 image side [default: 0.025]
-c, --color COLOR color of the frame as a color name, hex value or in
 rgb(...) function form [default: white]
--help Show this message and exit.

framecrop

The framecrop command crops and frames an image to a target aspect ratio.
The resulting image will conform to the target aspect ratio so you don’t have
to precompute the required crop ratio.

Assuming image rainbow.jpg in the current directory, framecrop can be applied
with aspect ratio 3:2, a grey frame of width 10% and output to img_0000.jpg as follows:

ls rainbow.jpg | imgwrench framecrop -a '3:2' -w 0.1 -c grey

[image: _images/framecrop.jpg]
framecrop supports the parameter -a/--aspect-ratio which has to be an aspect ratio
specified as two numbers separated by a colon, e.g. 2:1, 3:4, 117:123. This will
be the ratio of the final image including the frame.

The parameter -w/--frame-width specifies the frame width as fraction of the longer
image side after the crop operation. Also -c/--color is supported which accepts
the frame color as either a name (e.g. white, green), a hex value (e.g.
#ab1fde) or an rgb function value (e.g. rgb(120,23,217)).

Usage: imgwrench framecrop [OPTIONS]

Crop and frame an image to a target aspect ratio.

Options:
-a, --aspect-ratio RATIO aspect ratio of final image including frame
 [default: 3:2]
-w, --frame-width FLOAT width of the frame as a fraction of the longer
 side of the cropped image [default: 0.025]
-c, --color COLOR color of the frame as a color name, hex value or
 in rgb(...) function form [default: white]
--help Show this message and exit.

quad

The quad command creates grids consisting of four images. The primary use case
is batch creation of small prints. Images are rotated in order to minimize the area cropped away,
i.e. landscape images are rotated if the target image has portrait aspect ratio and
portrait images are rotated if the target image has landscape aspect ratio.

ls *.jpg | imgwrench quad

[image: _images/quad.jpg]
quad automatically creates the correct amount of target images and leaves remaining space blank
(color can be specified using --color). Also, the usual --width, --height
and --frame-width options are supported.

Usage: imgwrench quad [OPTIONS]

Collects four images to a quad.

Options:
-w, --width INTEGER width of the quad image [default: 3072]
-s, --height INTEGER height of the quad image [default: 2048]
-f, --frame-width FLOAT width of the frame as a fraction of the longer
 side of the output image [default: 0.0]

-d, --double-inner-frame double inner frame width for even cuts
-c, --color COLOR color of the frame as a color name, hex value or
 in rgb(...) function form [default: white]

--help Show this message and exit

resize

The resize command resizes images to a maximum side length while preserving the
original aspect ratio.

Assuming image lensflare.jpg in the current directory, resize can be applied
with a maximum side length of 300 pixels to img_0000.jpg as follows:

ls lensflare.jpg | imgwrench resize -m 300

[image: _images/resize.jpg]
The parameter -m/--maxsize specifies the new maximum side length of the resized
image, i.e. for landscape images it specifies the new width and for portrait
images it specifies the new height.

Usage: imgwrench resize [OPTIONS]

Resize images to a maximum side length preserving aspect ratio.

Options:
-m, --maxsize INTEGER size of the longer side (width or height) in pixels
 [default: 1024]
--help Show this message and exit.

stack

The stack command stacks pairs of images vertically.

Assuming image sky.jpg and sunset.jpg in the current directory,
stack can be applied with a target width of 400 and height 600 pixels
to output to img_0000.jpg as follows:

ls sky.jpg sunset.jpg | imgwrench stack -w 400 -s 600

[image: _images/stack.jpg]
The parameters -w/--width and -s/--height (attention: it is -s, not -h to avoid
conflicts with --help) specify the target width and height of the output image.
Remaining space will be white.

Usage: imgwrench stack [OPTIONS]

Stack images vertically, empty space in the middle.

Options:
-w, --width INTEGER width of the stacked image [default: 2048]
-s, --height INTEGER height of the stacked image [default: 3072]
--help Show this message and exit.

imgwrench

	imgwrench package
	Subpackages
	imgwrench.commands package
	Submodules

	imgwrench.commands.blackwhite module

	imgwrench.commands.colorfix module

	imgwrench.commands.crop module

	imgwrench.commands.frame module

	imgwrench.commands.resize module

	imgwrench.commands.save module

	imgwrench.commands.stack module

	Module contents

	Submodules

	imgwrench.cli module

	imgwrench.info module

	imgwrench.param module

	Module contents

imgwrench package

Subpackages

	imgwrench.commands package
	Submodules

	imgwrench.commands.blackwhite module

	imgwrench.commands.colorfix module

	imgwrench.commands.crop module

	imgwrench.commands.frame module

	imgwrench.commands.resize module

	imgwrench.commands.save module

	imgwrench.commands.stack module

	Module contents

Submodules

imgwrench.cli module

Command Line Interface for Image Wrench.

	
imgwrench.cli.pipeline(image_processors, image_list, repeat, prefix, increment, digits, keep_names, force_overwrite, outdir, quality, preserve_exif, jpg)

	

imgwrench.info module

Image meta information.

	
class imgwrench.info.ImageInfo(path, index, exif, xmp)

	Bases: object

Container for image meta information

imgwrench.param module

Custom parameter types for the click-based CLI

	
class imgwrench.param.Color

	Bases: click.types.ParamType

Parameter type representing a color as name, hex or rgb value

	
convert(value, param, ctx)

	Convert the value to the correct type. This is not called if
the value is None (the missing value).

This must accept string values from the command line, as well as
values that are already the correct type. It may also convert
other compatible types.

The param and ctx arguments may be None in certain
situations, such as when converting prompt input.

If the value cannot be converted, call fail() with a
descriptive message.

	Parameters

	
	value – The value to convert.

	param – The parameter that is using this type to convert
its value. May be None.

	ctx – The current context that arrived at this value. May
be None.

	
name = 'color'

	

	
class imgwrench.param.Ratio

	Bases: click.types.ParamType

Parameter type representing a ratio or rational number

	
convert(value, param, ctx)

	Convert the value to the correct type. This is not called if
the value is None (the missing value).

This must accept string values from the command line, as well as
values that are already the correct type. It may also convert
other compatible types.

The param and ctx arguments may be None in certain
situations, such as when converting prompt input.

If the value cannot be converted, call fail() with a
descriptive message.

	Parameters

	
	value – The value to convert.

	param – The parameter that is using this type to convert
its value. May be None.

	ctx – The current context that arrived at this value. May
be None.

	
name = 'ratio'

	

Module contents

A command line tool for my image processing needs.

imgwrench.commands package

Submodules

imgwrench.commands.blackwhite module

Convert color images to black and white.

	
imgwrench.commands.blackwhite.blackwhite(image)

	Convert color images to black and white.

imgwrench.commands.colorfix module

Fix colors of images by stretching their channel histograms to full
range.

	
imgwrench.commands.colorfix.colorfix_fixed_cutoff(img, lower_cutoff, upper_cutoff)

	Fix colors by stretching channel histograms between given
cutoff colors to full range.

	
imgwrench.commands.colorfix.colorfix_quantiles(img, level=0.01)

	Fix colors by stretching channel histograms between given quantiles
to full range.

	
imgwrench.commands.colorfix.colorfix_quantiles_fixed_cutoff(img, level, lower_cutoff, upper_cutoff)

	Fix colors by stretching channel histogram between inner values
of given quantiles and cutoff colors to full range.

	
imgwrench.commands.colorfix.quantiles(img, level=0.01)

	Compute high and low quantiles to the given level

	
imgwrench.commands.colorfix.stretch_histogram(img, cutoffs)

	Stretch channel histograms between given cutoffs to full range.

imgwrench.commands.crop module

Crop images to the given aspect ratio.

	
imgwrench.commands.crop.crop(image, aspect_ratio)

	Crop images to the given aspect ratio.

imgwrench.commands.frame module

Put a monocolor frame around images.

	
imgwrench.commands.frame.frame(image, width, color)

	Put a monocolor frame around images.

imgwrench.commands.resize module

Resize images to a maximum side length preserving aspect ratio.

	
imgwrench.commands.resize.resize(image, maxsize)

	Resize image to maxsize (longer) side length preserving aspect ratio.

imgwrench.commands.save module

No-op to enable saving of images using imgwrench without processing.

imgwrench.commands.stack module

Stack images vertically, empty space in the middle.

	
imgwrench.commands.stack.stack(img1, img2, width, height)

	Stack images vertically, empty space in the middle.

Module contents

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/luphord/imgwrench/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Image Wrench could always use more documentation, whether as part of the
official Image Wrench docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/luphord/imgwrench/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up imgwrench for local development.

	Fork the imgwrench repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/imgwrench.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv imgwrench
$ cd imgwrench/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 imgwrench tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check
https://travis-ci.com/github/luphord/imgwrench/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_imgwrench

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	luphord <luphord@protonmail.com>

Contributors

None yet. Why not be the first?

History

0.17.0 (2022-11-12)

	-r/--repeat option for repeating input files

	Constrain click version to <8.1 due to breaking API change; this will be relaxed in a future version

	Constrain Pillow version to <9.0 due to breaking tests; this will be relaxed in a future version

	Drop support for Python 3.6 and 3.7

	Add support for Python 3.9 and 3.10

	Upgrade dependencies

	Migrate from travis-ci.com to GitHub actions

0.16.1 (2021-06-19)

	Fix support for click>=8.0 which has changed its behaviour regarding custom parameter types

0.16.0 (2021-01-23)

	quad subcommand supports doubling inner frame using the -d/--double-inner-frame flag

0.15.0 (2021-01-22)

	collage subcommand selects best layout based on score function

	collage subcommand supports -n/--number-tries parameter to specify number of layout tries

0.14.0 (2021-01-21)

	BREAKING CHANGE: replace golden collage approach with BRIC algorithm in collage subcommand

	BREAKING CHANGE: drop support for Python 3.5

	format code with black

0.13.0 (2020-10-26)

	quad subcommand to to collect four images into a quad

	improve documentation

0.12.0 (2020-07-24)

	flip subcommand to flip/mirror images left-right

	Monkey patch IFDRational.__eq__ method of Pillow in tests to avoid regression with Pillow 7.2.0

0.11.1 (2020-04-05)

	-x/--seed option for collage to control initialization of random number generator

0.11.0 (2020-03-21)

	collage subcommand for creating a framed collage from images

	BREAKING CHANGE: default method for colorfix is now quantiles-fixed-cutoff

	preserve xmp metadata when -e/--preserve-exif is used (in addition to exif metadata)

0.10.0 (2020-03-04)

	-m/--method option to colorfix (default: quantiles)

	add fixed-cutoff as new method to colorfix accepting fixed colors as color cutoff boundaries

	add quantiles-fixed-cutoff as new method to colorfix combining quantiles and fixed-cutoff

	deprecate running colorfix without specifying method (as default will change in next version)

0.9.0 (2020-02-19)

	add numpy as dependency

	change colorfix algorithm to vectorized numpy code for performance

	support Python 3.8

0.8.1 (2020-01-12)

	fix crash when orientation is missing in exif headers

0.8.0 (2019-07-10)

	dither subcommand for dithering

	filmstrip subcommand to stack images horizontally

	images can be saved in PNG format using --png CLI flag

0.7.1 (2019-05-16)

	fix development status

0.7.0 (2019-05-16)

	option for preserving exif image metadata

	fix error when running with -k/--keep-names

	status progress to Alpha

0.6.0 (2019-03-14)

	framecrop subcommand to crop and frame an image to a target aspect ratio incl. tests and docs

	breaking change: moved command modules to commands package

	introduced ImageInfo as a container for additional meta information in the pipeline

	increased test coverage

	more documentation

0.5.2 (2019-03-10)

	use a custom parameter type for colors

0.5.1 (2019-03-09)

	changed default frame width to 0.025

	usage doc for frame subcommand

	consistent alphabetic sorting of subcommands

	use a custom parameter type for ratios

0.5.0 (2019-03-07)

	blackwhite subcommand to convert color images to black and white; incl. doc

	frame subcommand to put a monocolor frame around images; incl. tests

0.4.0 (2019-02-26)

	convert RGBA mode PNG images to RGB (to enable saving as JPG)

	crop subcommand to crop images to a specified aspect ratio

	documentation for colorfix and crop

0.3.0 (2019-02-17)

	-d/--digits option to specify number of digits in file names

	-c/--increment option to define increment for file numbering

	create non-existing output folder instead of complaining

0.2.0 (2019-01-30)

	no-op save command for only saving images

	raise exception if output image already exists

	-f/--force-overwrite flag to enable overwriting output

	tests for cli, pipeline and resize

0.1.1 (2019-01-29)

	Fix __main__ module

0.1.0 (2019-01-29)

	First release on PyPI.

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 imgwrench	

 	
 	
 imgwrench.cli	

 	
 	
 imgwrench.commands	

 	
 	
 imgwrench.commands.blackwhite	

 	
 	
 imgwrench.commands.colorfix	

 	
 	
 imgwrench.commands.crop	

 	
 	
 imgwrench.commands.frame	

 	
 	
 imgwrench.commands.resize	

 	
 	
 imgwrench.commands.save	

 	
 	
 imgwrench.commands.stack	

 	
 	
 imgwrench.info	

 	
 	
 imgwrench.param	

Index

 B
 | C
 | F
 | I
 | N
 | P
 | Q
 | R
 | S

B

 	
 	blackwhite() (in module imgwrench.commands.blackwhite)

C

 	
 	Color (class in imgwrench.param)

 	colorfix_fixed_cutoff() (in module imgwrench.commands.colorfix)

 	colorfix_quantiles() (in module imgwrench.commands.colorfix)

 	
 	colorfix_quantiles_fixed_cutoff() (in module imgwrench.commands.colorfix)

 	convert() (imgwrench.param.Color method)

 	(imgwrench.param.Ratio method)

 	crop() (in module imgwrench.commands.crop)

F

 	
 	frame() (in module imgwrench.commands.frame)

I

 	
 	ImageInfo (class in imgwrench.info)

 	imgwrench (module)

 	imgwrench.cli (module)

 	imgwrench.commands (module)

 	imgwrench.commands.blackwhite (module)

 	imgwrench.commands.colorfix (module)

 	
 	imgwrench.commands.crop (module)

 	imgwrench.commands.frame (module)

 	imgwrench.commands.resize (module)

 	imgwrench.commands.save (module)

 	imgwrench.commands.stack (module)

 	imgwrench.info (module)

 	imgwrench.param (module)

N

 	
 	name (imgwrench.param.Color attribute)

 	(imgwrench.param.Ratio attribute)

P

 	
 	pipeline() (in module imgwrench.cli)

Q

 	
 	quantiles() (in module imgwrench.commands.colorfix)

R

 	
 	Ratio (class in imgwrench.param)

 	
 	resize() (in module imgwrench.commands.resize)

S

 	
 	stack() (in module imgwrench.commands.stack)

 	
 	stretch_histogram() (in module imgwrench.commands.colorfix)

 _static/stack.jpg

_static/up-pressed.png

_static/quad.jpg

_static/resize.jpg

_static/up.png

_images/colorfix.jpg

_images/crop.jpg

_images/blackwhite.jpg

_images/collage.jpg

_images/dither.jpg

_images/filmstrip.jpg

_images/flip.jpg

nav.xhtml

 Table of Contents

 		
 Documentation for Image Wrench (imgwrench)

 		
 Image Wrench

 		
 Features

 		
 Installation

 		
 Usage

 		
 Pipelines

 		
 Developer Notes

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 blackwhite

 		
 collage

 		
 colorfix

 		
 crop

 		
 dither

 		
 filmstrip

 		
 flip

 		
 frame

 		
 framecrop

 		
 quad

 		
 resize

 		
 stack

 		
 imgwrench

 		
 imgwrench package

 		
 Subpackages

 		
 Submodules

 		
 imgwrench.cli module

 		
 imgwrench.info module

 		
 imgwrench.param module

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.17.0 (2022-11-12)

 		
 0.16.1 (2021-06-19)

 		
 0.16.0 (2021-01-23)

 		
 0.15.0 (2021-01-22)

 		
 0.14.0 (2021-01-21)

 		
 0.13.0 (2020-10-26)

 		
 0.12.0 (2020-07-24)

 		
 0.11.1 (2020-04-05)

 		
 0.11.0 (2020-03-21)

 		
 0.10.0 (2020-03-04)

 		
 0.9.0 (2020-02-19)

 		
 0.8.1 (2020-01-12)

 		
 0.8.0 (2019-07-10)

 		
 0.7.1 (2019-05-16)

 		
 0.7.0 (2019-05-16)

 		
 0.6.0 (2019-03-14)

 		
 0.5.2 (2019-03-10)

 		
 0.5.1 (2019-03-09)

 		
 0.5.0 (2019-03-07)

 		
 0.4.0 (2019-02-26)

 		
 0.3.0 (2019-02-17)

 		
 0.2.0 (2019-01-30)

 		
 0.1.1 (2019-01-29)

 		
 0.1.0 (2019-01-29)

_images/quad.jpg

_images/frame.jpg

_images/framecrop.jpg

_static/ajax-loader.gif

_images/resize.jpg

_images/stack.jpg

_static/blackwhite.jpg

_static/collage.jpg

_static/colorfix.jpg

_static/comment.png

_static/crop.jpg

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/dither.jpg

_static/down-pressed.png

_static/filmstrip.jpg

_static/flip.jpg

_static/file.png

_static/imgwrench.png

_static/frame.jpg

_static/framecrop.jpg

_static/minus.png

_static/plus.png

